On the stability of the orthogonal Pexiderized Cauchy equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Superstability and Stability of the Pexiderized Exponential Equation

The main purpose of this paper is to establish some new results onthe superstability and stability via a fixed point approach forthe Pexiderized exponential equation, i.e.,$$|f(x+y)-g(x)h(y)|leq psi(x,y),$$where $f$, $g$ and $h$ are three functions from an arbitrarycommutative semigroup $S$ to an arbitrary unitary complex Banachalgebra and also $psi: S^{2}rightarrow [0,infty)$ is afunction. Fur...

متن کامل

4 Orthogonal stability of the Pexiderized quadratic equation ∗

The Hyers–Ulam–Rassias stability of the conditional quadratic functional equation of Pexider type f (x+y)+f (x−y) = 2g(x)+2h(y), x ⊥ y is proved where ⊥ is the orthogonality in the sense of Rätz.

متن کامل

Cauchy–rassias Stability of Homomorphisms Associated to a Pexiderized Cauchy–jensen Type Functional Equation

We use a fixed point method to prove the Cauchy–Rassias stability of homomorphisms associated to the Pexiderized Cauchy–Jensen type functional equation r f ( x+ y r ) + sg ( x− y s ) = 2h(x), r,s ∈ R\{0}

متن کامل

On the stability of the Pexiderized cubic functional equation in multi-normed spaces

In this paper, we investigate the Hyers-Ulam stability of the orthogonally  cubic equation and  Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the  $2$-variables cubic  equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...

متن کامل

Stability of the Pexiderized Lobacevski Equation

The stability problem of the functional equation was conjectured by Ulam 1 during the conference in the University of Wisconsin in 1940. In the next year, it was solved by Hyers 2 in the case of additive mapping, which is called the Hyers-Ulam stability. Thereafter, this problem was improved by Bourgin 3 , Aoki 4 , Rassias 5 , Ger 6 , and Gǎvruţa et al. 7, 8 in which Rassias’ result is called t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.05.052